Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Nat Commun ; 13(1): 4503, 2022 08 03.
Article in English | MEDLINE | ID: covidwho-1972603

ABSTRACT

The COVID-19 pandemic is exacting an increasing toll worldwide, with new SARS-CoV-2 variants emerging that exhibit higher infectivity rates and that may partially evade vaccine and antibody immunity. Rapid deployment of non-invasive therapeutic avenues capable of preventing infection by all SARS-CoV-2 variants could complement current vaccination efforts and help turn the tide on the COVID-19 pandemic. Here, we describe a novel therapeutic strategy targeting the SARS-CoV-2 RNA using locked nucleic acid antisense oligonucleotides (LNA ASOs). We identify an LNA ASO binding to the 5' leader sequence of SARS-CoV-2 that disrupts a highly conserved stem-loop structure with nanomolar efficacy in preventing viral replication in human cells. Daily intranasal administration of this LNA ASO in the COVID-19 mouse model potently suppresses viral replication (>80-fold) in the lungs of infected mice. We find that the LNA ASO is efficacious in countering all SARS-CoV-2 "variants of concern" tested both in vitro and in vivo. Hence, inhaled LNA ASOs targeting SARS-CoV-2 represents a promising therapeutic approach to reduce or prevent transmission and decrease severity of COVID-19 in infected individuals. LNA ASOs are chemically stable and can be flexibly modified to target different viral RNA sequences and could be stockpiled for future coronavirus pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Administration, Intranasal , Animals , Humans , Mice , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Pandemics/prevention & control , RNA, Viral/genetics
2.
IEEE Internet Things J ; 8(21): 15939-15952, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1570214

ABSTRACT

Communication between nanomachines is still an important topic in the construction of the Internet of Bio-Nano Things (IoBNT). Currently, molecular communication (MC) is expected to be a promising technology to realize IoBNT. To effectively serve the IoBNT composed of multiple nanomachine clusters, it is imperative to study multiple-access MC. In this article, based on the molecular division multiple access technology, we propose a novel multiuser MC system, where information molecules with different diffusion coefficients are first employed. Aiming at the user fairness in the considered system, we investigate the optimization of molecular resource allocation, including the assignment of the types of molecules and the number of molecules of a type. Specifically, three performance metrics are considered, namely, min-max fairness for error probability, max-min fairness for achievable rate, and weighted sum-rate maximization. Moreover, we propose two assignment strategies for types of molecules, i.e., best-to-best (BTB) and best-to-worst (BTW). Subsequently, for a two-user scenario, we analytically derive the optimal allocation for the number of molecules when types of molecules are fixed for all users. In contrast, for a three-user scenario, we prove that the BTB and BTW schemes with the optimal allocation for the number of molecules can provide the lower and upper bounds on system performance, respectively. Finally, numerical results show that the combination of BTW and the optimal allocation for the number of molecules yields better performance than the benchmarks.

3.
Atmospheric and Oceanic Science Letters ; : 100019, 2020.
Article in English | ScienceDirect | ID: covidwho-973823

ABSTRACT

ABSTRACT In 2020, the COVID-19 pandemic spreads rapidly around the world. To accurately predict the number of daily new cases in each country, Lanzhou University has established the Global Prediction System of the COVID-19 Pandemic (GPCP). In this article, the authors use the ensemble empirical mode decomposition (EEMD) model and autoregressive–moving-average (ARMA) model to improve the prediction results of GPCP. In addition, the authors also conduct direct predictions for those countries with a small number of confirmed cases or are in the early stage of the disease, whose development trends of the pandemic do not fully comply with the law of infectious diseases and cannot be predicted by the GPCP model. Judging from the results, the absolute values of the relative errors of predictions in countries such as Cuba have been reduced significantly and their prediction trends are closer to the real situations through the method mentioned above to revise the prediction results out of GPCP. For countries such as El Salvador with a small number of cases, the absolute values of the relative errors of prediction become smaller. Therefore, this article concludes that this method is more effective for improving prediction results and direct prediction. 摘要 2020年, 新型冠状病毒肺炎(COVID-19)在世界范围内迅速传播.为准确预测各国每日新增发病人数, 兰州大学开发了COVID-19流行病全球预测系统(GPCP).在本文的研究中, 我们使用集合经验模态分解(EEMD)模型和自回归-移动平均(ARMA)模型对GPCP的预测结果进行改进, 并对发病人数较少或处于发病初期, 不完全符合传染病规律, GPCP模型无法预测的国家进行直接预测.从结果来看, 使用该方法修正预测结果, 古巴等国家预测误差均大幅下降, 且预测趋势更接近真实情况.对于萨尔瓦多等发病人数较少的国家直接进行预测, 相对误差较小, 预测结果较为准确.该方法对于改进预测结果和直接预测均较为有效.

SELECTION OF CITATIONS
SEARCH DETAIL